
 

Abstract—Sub-vocal electromyogram/electro palatogram
(EMG/EPG) signal classification is demonstrated as a method
for silent speech recognition. Recorded electrode signals from
the larynx and sublingual areas below the jaw are noise
filtered and transformed into features using complex dual
quad tree wavelet transforms. Feature sets for six sub-vocally
pronounced words are trained using a trust region scaled
conjugate gradient neural network. Real time signals for
previously unseen patterns are classified into categories
suitable for primitive control of graphic objects. Feature
construction, recognition accuracy and an approach for
extension of the technique to a variety of real world
application areas are presented.

Index Terms—EMG, Sub Acoustic Speech, Wavelet, Neural
Network, EPG, speech recognition

I. INTRODUCTION

OMMUNICATION  between humans or humans and
their machines occurs in many ways. Traditionally

visual and verbal information exchange tends to dominate.
As a result, efforts at automating human or human to
machine communication such as commercial speech
recognition, have emphasized the public audible aspects.
However, a totally auditory communication strategy places a
number of constraints on the communication channels. These
constraints include sensitivity to ambient noise, a
requirement for proper formation and enunciation of words,
and a shared language. The physical limitations of sound
production also become problematic in environments such as
HAZMAT, EVA space tasks, or underwater operations.
Furthermore, auditory expression may be undesirable for
private communication needed in many daily situations  such
as discrete telephone calls, offline comments during
teleconferencing, military operations, or human to machine
commands and queries.  Communication alternatives that are
both private and non-dependant on production of audible
signals are valuable.

One proposed method is the  direct readout of brain
signals. This approach bypasses speech production altogether.
Wolpaw et al. [9] recently published a review of the state of
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the art in electroencephalograph (EEG) understanding. We too
are pursuing EEG approaches in our lab [12]. However there
are a number of practical difficulties for nearer term
application of such EEG approaches due largely to their use
of aggregated surface measured brain potentials, their inherent
non-linear complexity, and their idiosyncratic nature. The
alternative, invasive EEG measurement,  is not considered by
us as practical for widespread use.

      Consequently we are exploring surface measurement
of only muscle signals (i.e. electromyographic or EMG) to
disambiguate speech signals produced with minimal or no
acoustic output. In the present paper we demonstrate one
approach to the recognition of discrete task control words.
Our approach uses EMG [1] measured on the side of the
throat near the larynx  and under the chin to pick up surface
tongue signals (i.e. electropalatogram or EPG). The approach
capitalizes on the fact that vocal speech muscle control
signals must be highly repeatable to be understood by others.
The central idea is to intercept these signals prior to actual
sound generation and use them directly. These are then fed
into a neural network pattern classifier. What is analyzed is
silent or sub auditory speech like when a person silently
reads or talks to themselves. [2][3]. In our approach, the
tongue and throat muscles still respond slightly as though a
word was to be made audible albeit very faintly and with
little if any external movement cues presented. Given
sufficiently precise sensing, optimal feature selection, and
good signal processing techniques, it is possible to use these
weak signals to perform usable tasks without vocalization yet
mimic the ideal of thought based approaches.

There are a number of advantages to taking this approach
over invasive alternatives. Among them are minimization of
word variations because there is a shared language and sound
production requirement, potential to connect signal
recognition to highly developed speech recognition engines,
non invasive sensing, reasonable robustness to physiological
variations, and privacy.

The enabling technologies required are sensors adequate to
measure the EMG signals, signal processing algorithms to
transform the signals into usable feature sets, and a trained
neural network or other pattern classifier to learn and classify
signal feature sets in real time. Our initial results have
demonstrated an average of 92% accuracy in discriminating
six untrained sub acoustic words (stop, go, left, right, alpha,
omega) in a simulated real time environment under a wide
variety of electrode placement and recording times. In further
experiments we increased the number of words and the nature
of the sub acoustic features to set the stage for more powerful
applications.
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We begin this paper by describing our generic method;
next we describe our experiments and results. We end with
descriptions of some related work, future directions, and a
discussion of implementation issues yet to be resolved.

I. METHOD

A. Data Acquisition

Three subjects aged 55, 35, and 24 were recorded while
sub auditorially pronouncing six English words: stop, go,
left, right, alpha, and omega. These particular six words were
selected in order to form a control set for a small graphic
model of a Mars Rover. Alpha and omega were chosen as
general control words to represent faster/slower or up/down as
appropriate for the particular simulated task.

EMG and EPG signal data was collected for each of the
subjects using two pairs of self-adhesive AG/AG-Cl
electrodes. They were located on the left and right anterior
area of the throat approximately .25 cm back from the chin
cleft and 1- 1/2 cm from the right and left side of the larynx
(Figure 1). Initial results indicated that as few as one
electrode pair located diagonally between the cleft of the chin
and the larynx would suffice for small sets of discrete word
recognition. Signal grounding required an additional
electrode attached to the right wrist. When acquiring data
using the wet electrodes, each electrode pair was connected to
a commercial Neuroscan signal recorder which recorded the
EMG responses sampled at 2000 Hz. A 60 hertz notch filter
was used to remove ambient interference.

Fig 1: Electrode placement and recording

Each subject recorded one hundred exemplars of each word
over 6 days, in morning and afternoon sessions. In the first
experiments, the signals were blocked offline into  2 second
windows, and extraneous signals, e.g. swallows or coughs,
were removed using SCAN 4 Neuroscan software. Fig. 2
shows two typical EMG blocked signals for the words left
and omega.

 For signal feature processing, Matlab scripts were
developed that created a unified signal processing system

from recording through network training. These routines were
used to perform tasks such as transform the raw signals into
feature sets, dynamically threshold them, compensate for
changes in electrode position, adjust signal/noise levels, and
implement neural network algorithms for pattern recognition
and training.  EMG/EPG artifacts such as swallowing,
muscle fatigue tremors, or coughs were removed during
preprocessing of the block files.

B. Feature Generation
 Blocked signal data for each word was transformed into

usable classifier feature vectors by preprocessing transforms
combined with a coefficient reduction technique. The
transforms tested were:

• A windowed Short Time  Fourier Transform (STFT),
•  Discrete and continuous Wavelets (DWT & CWT)

using Daubechies 5 and 7 bases
•  Dual Tree Wavelets (DTWT) using a near_sym_a 5,7

tap filter and a Q-shift 14,14 tap filter [8].
•  Moving averages with lagged means, medians, and

modes
• Hartley Transforms
• Hilbert-Huang Transforms
• and Linear Predictive Coding (LPC) Coefficients
Feature sets were created somewhat differently for each of

the above transforms depending on their unique signal
processing advantages and disadvantages. Each feature set
produced varying degrees of efficacy in pattern
discrimination. Because of space limitations we confine

Fig 2: Sub Acoustic signals for “left” and “omega”

ourselves in this paper to the most effective real time
transforms, i.e. windowed STFT and Dual Tree Wavelet
coefficient matrices, both of which were post-processed in a
similar way to create  their feature vectors. The procedure
used for the two pre-transforms was as follows.

Transform coefficient vectors were  generated  for each
word using one of the latter two transforms on the absolute
value of the raw signal. (This was because the electrodes were
bipolar and hence directional sign information had no
significance). Vectors were post processed using the Matlab



routines to create a matrix of spectral coefficients. This
matrix  was tessellated into a set of sub matrices. The
number and size of the sub matrices depended upon the
spectral signal information complexity. Tessellation sizes
were determined based on average signal energy in a given
region of the spectral matrix. Both equal and unequal
segmentation size schemes were considered. A single
representative value was calculated for each sub matrix to
reduce the number of variables presented to the pattern
recognition algorithm and represent average coefficient
energy.

We chose to use a simple mean as the representative value
because other choices including medians, modes or
maximum sub matrix values showed no improvement. The
result was a vector of coefficient means for each sub acoustic
word instance. The reasoning behind this approach was that
each word could be treated as a noisy visual pattern
recognition problem where the spectral energy matrix became
a 2-D image and features were extracted so as to discriminate
among interesting features in the ‘image’ patterns. Dual tree
wavelets were selected rather than standard discrete wavelets
to minimize the normal wavelet sensitivity to phase shift.
Similarly, sensitivity to temporal non-stationarity in the
STFT was improved using windowing. Continuous wavelets
were not considered practical for real time computational
reasons. The Hartley transform was explored for a potential
benefit of combining both real and imaginary signal
components over real components alone.

C. Feature Training
These feature vectors were used to train the neural network

recognition engine. Word signals were split into three sets, a
training set, validation set, and test set.  Generally,
recognition was evaluated  using 20 percent of the untrained
word exemplars and signals from only one electrode pair
randomly drawn from the data recording sessions. Five neural
network paradigms were considered for signal classifiers.
Those tested were:

• Scaled conjugate gradient nets
• Leavenburg-Marquardt nets,
• Probabilistic Neural Nets (PNN),
•  Modified Dynamic Cell Structure Nets (DCS)

[13]
• and Linear Classifiers.

After comparison, a scaled conjugate gradient net was
chosen for the following reasons. Leavenberg-Marquard
reached the lowest mean square error levels but required too
much system memory for large data sets. This was true even
using reduced memory variations. A low mean squared error
(MSE) did not translate into improved generalization for new
signals due to high sensor noise. PNN nets produced
reasonable classifications but required very large training
sample sizes to reach stable probabilities and were not
superior in their ultimate pattern discrimination ability. The

DCS net had very fast training which made it good for real
time adaptation but tended to be less compact for our
anticipated applications that are memory sensitive. The scaled
conjugate gradient network had fast convergence with
adequate error levels for the signal to noise ratio in the data
and showed comparable performance to the Levenberg-
Marquardt network. This may possibly be because it also
took advantage of a trust region gradient search criteria. In
other EMG tasks we successfully applied Hidden Markov
Models (HMM) (14) but so far they were most effective with
non-multimodal signal distributions, such as with discrete
gestures, rather than the present temporally non-stationary
sub-auditory signal patterns. They also require extensive pre
training to estimate transition probabilities. We anticipate
further evaluations and have not ruled out HMM models, and
may use a HMM/Neural net hybrid if warranted.

D. Human Learning and the Real Time Environment
   To quickly explore many experiments on recognition

under different transform variations, we minimized the
amount of on line human learning by operating in a
simulated real-time environment. This environment is part of
a system being developed at NASA Ames for large agency
data understanding problems. Within the environment, EMG
signals were recorded to file and then later used to train and
test the recognition engines. Our three subjects were not
given immediate feedback about how well their sub vocal
pronunciations were recognized; however there was still a
small amount of learning that took place as the subjects were
permitted to view their EMG signals after the experiments
and  between trials. Nonetheless there were no indications
that pronunciation patterns changed significantly over time.

I. EXPERIMENTS  AND RESULTS

A. Feature Generation

Five of the feature transforms had sufficient merit to
warrant further experimentation and were evaluated in depth
for generalization and learning performance. They were:

1.  Discrete and Dual Tree Wavelets (Discrete at 5x5,
4x10, and 8x10 spectral matrix tessellations and
Dual at 5x10) which produced 92% word
recognition accuracy. The DWT was defined as:

Where k is the translation and j  the
dilation/compression parameter, w is the expansion
function. In our case, these were Daubechies filters.

f (t) = bj,kw j,kj,k
Â (t)

w j ,k (t ) = 2 j / 2w( j2 t - k )



1 .  STFT tessellated to 5x10 or 50 features that
produced 91% word recognition accuracy. The
Fourier transform defined as:

1. Hartley Transform tessellated to 5x10 defined as:

which showed 90% recognition accuracy

1.  And Moving Averages at 200, 100, and 50 time
steps which produced 83% word recognition
accuracy.

Table 1: “Percentile of Correct Word Classification,”
presents the recognition engine’s accuracy for each transform
in classifying unseen data. By unseen, we mean feature
vectors that were not used during neural network training. As
shown, the best performing pre transform was Kingsbury’s
Dual Tree Complex Wavelet (DTCW) [8]. We used a quarter
sample shift orthogonal (Q-shift) filter having 10,10 taps
with a Near-symmetric-a filter having 5,7 taps.

Kingsbury’s DTCW implementation of the Discrete
Wavelet Transform applies a dual tree of phase shifted filters
to produce real and imaginary components of complex
wavelet coefficients. One of its valuable properties for this
research is its improved shift invariance to the position of a
signal in the signal window. Other desirable features are
better directional selectivity for diagonal features, limited
redundancy independent of the number of scales, and efficient
order-N computation. In our experiments, the DTCW
increased shift invariance over the DWT by several percentage
points. Real time implementation of a CWT was not
practical from a computation and time perspective. However,
the dual tree wavelet achieves comparable generalization
performance to the CWT by doubling the sampling rate at
each  level of a short support complex FIR filter tree. The
samples must be evenly spaced. In effect, two parallel fully
decimated trees are constructed so that the filters in one tree
provides delays that are half a sample different from those in
the other tree. In the linear phase this requires odd length
filters in one tree and even length filters in the other. The
impulse response of the filters then looks like the real and
imaginary parts of a complex wavelet. This is how
Kingsbury uses them.

For our STFT’s we used a standard implementation
having a Hann window and 50% time overlap to smooth the
signal window. Unequal windows based on variances were

also considered but did not add to overall performance.
However, we could take advantage of the computation
efficiency of an STFT and still have fairly high recognition
performance, though not as good as the DTWT. Baysian
regularization networks were tested but on initial results they
also did not increase the level of recognition. .

Earlier EMG research [10] indicated there might be an
advantage in preprocessing wavelet packet features using
Principal Component Analysis (PCA). PCA was tested as a
preprocessing method for the DWT EMG signal vectors.
Even using fairly large numbers of PCA components,
generalization again proved poorer than without the
transform. Hence this step was omitted in our final
procedure. We attribute this possibly to high signal pattern
variation caused by phase shifting within the feature
windows.

During the experiments, it became apparent some signals
were not being well recognized by the neural net. In a real
time system with a capability to interactively request speaker
clarification, it is desirable to have a way to detect and
respond to such marginal signals. Individual word
recognition rates can help indicate which sub acoustic words
are more easily discriminated. For example, ‘go’ and ‘omega’
consistently scored recognition rates of 90% or better.  Tables
2 and 3 give the Confusion Matrices for the six words and
indicate which words were confused for one another. For
example, in Table 2, we see the word ‘stop’ correctly
classified 21 times, but mistakenly classified as the word
‘right’ 4 times. Overall the confusion rates were not high.

TABLE 1 PERCENTILE OF CORRECT WORD CLASSIFICATION

TRANSFORM

RECOGNITION

RATES

Dual Tree
Wavelet

2 level,
near
symmetric
filter; q
shift b;
Trained
with 125
epochs

Fourier

Hann
windows
overlapped
50%
Trained
with 200
epochs

Hartley

Hann
windows
overlapped
50%
Trained
with 250
epochs

Moving
Average

Square
windows
overlapped
50%;
Trained
with 125
epochs

“Stop” 84% 83% 79% 62%

“Go” 100% 100% 97% 90%

“Left” 91% 91% 91% 84%

“Right” 80% 89% 91% 91%

“Alpha” 97% 82% 79% 73%

“Omega” 97% 98% 100% 95%

Average 92% 91% 90% 83%

real (FFTcoef ) - imag(FFTcoef )

x(k + 1) = x(n + 1)
n=0

N -1
Â n

knW

nW = e- j(2P / N )

N = length(x)



TABLE 2: CONFUSION MATRIX FOR THE DUAL TREE WAVELET TRANSFORM

Dual Tree
Wavelet Stop Go Left Right Alpha Omega
Stop 21 0 0 4 0 0
Go 0 37 0 0 0 0
Left 0 0 32 3 0 0
Right 1 1 3 20 0 0
Alpha 0 0 0 0 37 1
Omega 0 0 0 0 1 35

TABLE 3: CONFUSION MATRIX FOR THE STFT TRANSFORM

Fourier
Stop Go Left Right Alpha Omega

Stop 24 2 0 0 0 3
Go 0 31 0 0 0 0
Left 0 0 29 2 1 0
Right 1 0 2 31 1 0
Alpha 1 0 0 4 27 1
Omega 0 1 0 0 0 39

        Fig. 2 Real Time Display Environment

I. RELATED WORK

Little work testing the ability of EMG by itself to perform
speech recognition appears to have been done. Parallel work
for speech recognition augmentation along the lines of that in
our set of experiments was performed by Chan [6]. He
proposed supplementing voiced speech with EMG in the
context of aircraft pilot communication. In their work they
studied the feasibility of supporting auditory speech
information with EMG signals recorded from primary facial
muscles using sensors imbedded in a pilot oxygen mask.
Five surface signal sites were recorded during vocalized

pronunciation of the digits zero to nine using Ag-AgCl
button electrodes and an additional acoustic channel to
segment the signals. Their work demonstrated the potential
of using information from multi-source aggregated surface
measured EMG signals to enhance the performance of a
conventional speech recognition engine.

I. FUTURE DIRECTIONS

We are currently exploring a number of other enabling
technologies for enhanced EMG speech recognition and
conducting further experiments to increase general task
usability and vocabulary size. The technologies include the
capacitive non-contact sensors in wearable arrays and a real-
time system environment (figure 2). It is recognized that wet
AG/AG-Cl electrodes are problematic for many real world
tasks due to contact and surface resistance, hence dry
electrodes and new non-contact sensors are being tested as
well. For example, NASA Ames Research Center is working
with Quantum Applied Science and Research, Inc.
(QUASAR) to develop electric potential free space sensors
that do not require resistive, or even good capacitive coupling
to the user. The sensor design provides a high input
impedance for the electrode that measures the free space
potential, while accommodating the input bias current of the
amplifier. At 10 Hz and above, the new sensor has
comparable sensitivity to conventional resistive contact  
electrodes. In the off-body mode the sensor can make an
accurate measurement even through clothing. More detail
about this research is presented in [10].

New experiments are studying the feasibility of an
expanded vocabulary, ideally, one composed of the basic
speech components including vowels, consonants, and other
phonetic building blocks. Trying to detect these building
blocks poses an interesting problem, since many of the
auditory features that generate vocal speech such as
aspiration, glottal stops, or tonality may have no direct EMG
analog. However, the EMG signal is very rich, and this
richness may actually provide more useful cues for speech
recognition because they are so linked to the speech encoding
process cognitively. Initial experiments suggest that
extension to a larger 20-word control vocabulary is
reasonable. We will continue to grow the vocabulary with
sets of English phonemes usable by a full speech recognition
engine. If full speech recognition proves unfeasible, we can
still demonstrate useful specialized tasks with specialized
vocabularies such as machine control or cell phone dialing.

Currently we use a simulated real-time environment where
sub acoustic signals are recorded to files. These files are later
used as input to the feature generator and classifier. We are
implementing fast compact signal processing software to
enable real time processing now that is undergoing its first
tests on a digit based vocabulary.



II. CONCLUSION

We have described a system that demonstrates the
potential of sub acoustic speech recognition based on EMG
signals. It is able to measure and easily classify six sub
acoustic words with up to 92% accuracy using only one pair
of surface electrodes. The enabling technologies were surface
sensors used to measure the EMG signals, signal processing
used to transform the signals into feature sets, and neural
networks to learn and provide sufficient robustness for the
nonlinear and non-stationary nature of the underlying signal
data.

The method has proven to be sufficient for applications
that require discrete word, subject specific, limited control
vocabularies. An open question is whether this system can
achieve full scale sub acoustic speech recognition and achieve
the goal of EEG based human thought interfaces using EMG
signals alone.

Significant challenges remain. We must generalize trained
feature sets to other users, show real time training and user
startup, optimize transformations and neural networks, reduce
sensitivity to noise and electrode locations, and handle
changes in physiological states of the users.
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